מחקרים

RESEARCH

מה מעניין אותך?

כל הנושאים
אמנויות
מוח
הנדסה וטכנולוגיה
חברה
מדעים מדויקים
ניהול ומשפט
סביבה וטבע
רוח
רפואה ומדעי החיים
מוזיאון הטבע
חוקרים.ות את החדשות

מחקר

09.08.2022
פריצת דרך מדעית: חוקרים פיתחו מולקולה קטנה שתנגיש את הטיפול האימונולוגי בסרטן

פרופ' סצ'י-פאינרו: "אני מאמינה שבעתיד המולקולה הקטנה תהיה זמינה ותהפוך את הטיפול האימונולוגי לנגיש וליעיל לחולי סרטן."

  • רפואה ומדעי החיים

חוקרים מאוניברסיטת תל אביב ומאוניברסיטת ליסבון זיהו וסנתזו מולקולה קטנה שיכולה להוות תחליף נגיש ויעיל יותר לנוגדן המשמש בהצלחה לטיפול בשורה של מחלות סרטן. החוקרים מסבירים כי הנוגדנים לחלבוני PD-1/PD-L1 כבר מאושרים לשימוש קליני, לרבות בישראל, והם נחשבים להבטחה הגדולה של המאבק בסרטן. הטיפול האימונולוגי החדיש יכול להביא לשיפור משמעותי במצבו של החולה, וזאת ללא תופעות הלוואי הקשות הנלוות לטיפולים כמו כימותרפיה. אלא שהנוגדנים יקרים לייצור, ומכאן שאינם זמינים לכלל החולים. יתרה מכך, הטיפול לא משפיע על כל חלקי הגידולים הסרטניים המוצקים, כי הוא גדול מדי בכדי לחדור לאזורים פחות נגישים ופחות חשופים בגידול.

 

כעת, החוקרים מאוניברסיטת תל אביב ומאוניברסיטת ליסבון השתמשו בביואינפורמטיקה ובאנליזת מידע כדי למצוא חלופה קטנה וחכמה יותר לנוגדנים אלו. מאחורי הפיתוח פורץ הדרך עומד צוות בינלאומי של חוקרים בהובלת פרופ' רונית סצ'י-פאינרו, ראשת המרכז לחקר הביולוגיה של הסרטן וראשת המעבדה לחקר הסרטן וננו-רפואה בפקולטה לרפואה ע"ש סאקלר של אוניברסיטת תל אביב, בשיתוף עם פרופ' הלנה פלורינדו ופרופ' ריטה גואדש מאוניברסיטת ליסבון. תוצאות המחקר התפרסמו בכתב העת Journal for ImmunoTherapy of Cancer.

 

טיפול בסרטן באמצעות מערכת החיסון

"ב-2018 הוענק פרס נובל לרפואה לג'יימס אליסון ולטסוקו הונג'ו על תרומתם לחקר האימונותרפיה, טיפול בסרטן באמצעות מערכת החיסון", מספרת פרופ' סצ'י-פאינרו. "הונג'ו גילה שתאי T של מערכת החיסון מפרישים חלבון בשם PD-1 המשבית את פעילותם על ידי קישור לחלבון PD-L1 המבוטא על תאי הסרטן. בעצם הקישור בין ה-PD-1 ל-PD-L1, התאים הסרטניים משתקים את תאי ה-T, ובכך מונעים מהם להרוג את תאי הסרטן. הונג'ו פיתח נוגדנים המנטרלים את ה-PD-1 או את ה-PD-L1 ומשחררים את תאי ה-T להילחם בצורה אפקטיבית בסרטן".

 

פרופ' סצ'י-פאינרו מוסיפה: "הפוסט-דוקטורנטית ד"ר ריטה אקורסיו התחילה מאלפי מבנים מולקולריים, ובעזרת מאגרי מידע ומודלים חישוביים שנקראים CADD, או computer-aided drug design, צמצמנו את רשימת המועמדים עד שהגענו למבנה הטוב ביותר."

 

"בשלב השני וידאנו בניסויים בחיות מודל שהונדסו עם תאי T אנושיים שהמולקולה הקטנה אכן מעכבת את התפתחות הגידול לא פחות טוב מהנוגדנים לאחר עיכוב ה-PD-L1. בנוסף, הדוקטורנטית סבינה פוצי תיקפה את יעילות המולקולה החדשה על מודלים תלת-ממדיים של מלנומה שיצרה במעבדה. צריך להבין שנוגדן הוא מולקולה ביולוגית, לא סינתטית, ולכן צריך תשתית מורכבת והרבה כסף כדי לייצר אותה. נוגדן כזה עולה היום לחולה בסביבות ה-300 אלף דולר לשנה של טיפולים. אנחנו פיתחנו מולקולה קטנה שיודעת לעכב את הקישור של ה-PD-1/PD-L1 ולהזכיר למערכת החיסון שהיא צריכה לתקוף את הסרטן. כבר סנתזנו את המולקולה הקטנה עם ציוד פשוט, בזמן קצר ובשבריר מהמחיר. יתרון אחר של המולקולה הקטנה הוא שסביר להניח שאפשר יהיה ליטול אותה בבית, דרך הפה, ולא באינפוזיה באשפוז".

 

קטנה ועוצמתית

נוסף על שיקולי הנגישות, מהניסויים שערכו החוקרים עולה כי המולקולה הקטנה שיפרה את ההפעלה של תאי מערכת החיסון בתוך גידולים מוצקים. "שטח הפנים של גידול סרטני מוצק הינו הטרוגני", מסבירה פרופ' סצ'י-פאינרו. "אם באזור מסוים של הגידול יש פחות כלי דם, הנוגדן לא יצליח להיכנס לאזור הזה של הגידול. מאחר שמולקולה קטנה עוברת בדיפוזיה, היא לא תלויה לחלוטין בכלי הדם של הגידול או בחדירות שלהם. אני מאמינה שבעתיד המולקולה הקטנה תהיה זמינה ותהפוך את הטיפול האימונולוגי לנגיש וליעיל לחולי סרטן".

מחקר

01.08.2022
שיטת לימוד חדשה עשויה להביא לשיפור משמעותי ביכולות התפיסה הוויזואלית של אוטיסטים

למידה באמצעות "הבזקי זיכרון" במקום חזרתיות ארוכה ומייגעת הראתה יעילות גבוהה

  • מוח
  • חברה

מחקר חדש של אוניברסיטת תל אביב מציע שיטת לימוד חדשה באוטיזם שעשויה לקצר את תהליך הלמידה ואף לשפר משמעותית את הישגי המטופלים בכל הקשור ליכולות תפיסה ויזואלית. לטענת החוקרים, שיפור יכולת התפיסה של אנשים עם אוטיזם הוא אתגר קשה עבור אותם מטופלים, המצריך על פי רוב אימון ממושך ומייגע, לצד הקושי המאפיין אוטיזם להכליל את הלמידה לתנאים אחרים - כלומר להצטיין גם במטלה דומה בתנאים שהם לא למדו בעבר.

 

השיטה החדשה שמציעים החוקרים מבוססת על "הבזקי זיכרון", שנמשכים שניות ספורות בלבד, ושבאמצעותה הנבדקים מצליחים הן לשפר את יכולות התפיסה הוויזואלית שלהם והן להכליל את הלמידה.

 

המחקר נערך בהובלת הדוקטורנטית שירה קלורפלד-אוסלנדר ופרופ' ניצן צנזור מבית הספר למדעי הפסיכולוגיה וביה"ס סגול למדעי המוח באוניברסיטת תל אביב, בשיתוף עם פרופ' אילן דינשטיין וצוותו מאוניברסיטת בן גוריון. המחקר פורסם בכתב העת Current Biology.

 

פרופ' צנזור מסביר: "במעבדה שלי אנחנו מתמקדים בחקר למידה בבני אדם, וכבר היום אנחנו יודעים להגיד שחלק גדול מהלמידה לא קורה בתהליך האימון, אלא לאחר מכן - בתהליכי הטמעה וחיזוק של זיכרון המתרחשים 'אוף-ליין', למשל כאשר המוח שלנו במצב שינה. אלא ששיטות הלימוד הרגילות עדיין דוגלות בגישה לפיה אימון ממושך יותר שווה למידה טובה יותר: אם אתה רוצה לנגן על פסנתר, כדאי שתתאמן בכל יום שעות רבות בנגינה על הפסנתר עד שהנגינה תהפוך טבעית לך. אנחנו זיהינו מנגנון למידה חלופי שמשתמש ב'הבזקי זיכרון' – חשיפה קצרצרה למטלה שכבר נלמדה – כדי להטמיע ולהכליל את הכישורים שפותחו".

 

תוצאות מפתיעות ומעודדות במיוחד

במסגרת המחקר, צוות החוקרים בחן כ-30 נבדקים בוגרים עם אוטיזם בתפקוד גבוה שנתבקשו ללמוד מטלה ויזואלית (למשל – זיהוי כיוון של קווים המופיעים למספר אלפיות השנייה על המסך). אולם במקום לחזור על המטלה מדי יום, הנבדקים בקבוצת הניסוי המרכזית למדו את המטלה לעומק ביום הראשון, ובימים שלאחר מכן נחשפו לגירוי הוויזואלי למשך מספר שניות בלבד. במבחן התוצאה, למרות שהנבדקים למדו את המטלה במשך זמן מינימלי, ביצועיהם השתפרו משמעותית, בכ-20-25%, בדומה ללמידה רגילה מרובת חזרות ובדומה להישגים של נבדקים ללא אוטיזם.

 

זאת ועוד, גם כאשר הוצגה בפניהם מטלה בתנאים חדשים, שלא נלמדו (לדוגמא כאשר הגירוי הנלמד הוא במיקום חדש), הנבדקים שלמדו בשיטת הבזקי הזיכרון הציגו ביצועים משופרים מאשר הנבדקים בקבוצת הביקורת – כלומר הם ידעו להכליל את הכישורים שנלמדו במטלה הראשונה. ההצלחה של הנבדקים להכליל את הלמידה לתנאים אחרים נחשבת משמעותית למדי, כיוון שמדובר בכישורים שבהם אנשים עם אוטיזם מתקשים מאוד.

 

"כבר במחקרים קודמים הוכחנו שאפשר לשפר תהליכים של הטמעת למידה באמצעות הבזקי זיכרון", אומר פרופ' צנזור. "הראינו שאין צורך בזמן תרגול ממושך על מנת להטמיע את המטלה – מספיק להבזיק אותה לכמה שניות בודדות כדי לעורר את הרשת המוחית הרלוונטית, והמוח כבר יטמיע לבד את החומר. במקרה הזה בדקנו אנשים עם אוטיזם. לאוכלוסיות עם אוטיזם קיימים לעיתים קשיים בלמידה חזרתית ובהכללתה, כלומר להשתמש בכלים שנלמדו גם במטלות חדשות. באמצעות הבזקים קצרים של הגירוי הוויזואלי במטלה שנלמדה, הצלחנו לייצר למידה שהיא זהה ללמידה הרפטטיבית מבחינת היעילות שלה – כלומר קיצרנו משמעותית את זמן הלמידה. והערך המוסף הוא יכולת ההכללה: הנבדקים ביצעו מטלה בתנאים חדשים כאילו שהם למדו אותה בצורה מלאה".

 

לדברי פרופ' צנזור, לשיטה החדשה עשויות להיות השלכות פוטנציאליות משמעותיות – במגוון רב של תחומים. "המחקר החדש יכול לסלול את הדרך ללמידה משמעותית יותר של אוכלוסיות עם אוטיזם, במגוון רחב של מטלות. בנוסף, השיטה עשויה לסייע בשיקום אחרי פגיעות נוירולוגיות, כלומר באימון המוח לייצר מחדש את הקשרים שנפגעו, באמצעות אימון מקוצר".

מחקר

21.07.2022
הקשר בין קיפולי נייר לפיזיקה

החוקרים שפיצחו את הפיזיקה המרתקת של יריעות נייר מקומטות

  • מדעים מדויקים

כל אחד מאיתנו מקמט אינספור ניירות במהלך חייו. אנחנו משליכים את הנייר מעבר לעורף, היישר אל סל האשפה הקרוב במקרה הרע, ובמקרה הטוב אל סל מיחזור הנייר, ושוכחים ממנו. אבל מסתבר שיש מי שמוצאים ביריעה המקומטת הזו עולם ומלואו.

 

חוקרים מאוניברסיטת תל אביב ומהטכניון הצליחו לראשונה למפות את הקשר בין רשת הקשרים הסבוכה שנוצרת ביריעה דקה לאחר קימוטים חוזרים ונשנים שלה לבין התכונות המכאניות המפתיעות שלה, ובראשן היכולת של המערכת לקודד ולאכסן זיכרונות מכאניים. החוקרים אומרים כי חשיבות המחקר איננה רק בפיצוח המערכת עצמה אלא גם בתובנות שהיא מספקת על משפחה רחבה של מערכות פיזיקליות מורכבות בתחום החומר המעובה. המחקר התבצע בהובלת הדוקטורנט דור שוחט וד"ר יואב לחיני מבית הספר לפיזיקה ואסטרונומיה באוניברסיטת תל אביב. את נושא המידול והסימולציות במחקר הוביל ד"ר דניאל הקסנר מהפקולטה להנדסת מכונות בטכניון, והוא פורסם לאחרונה בכתב העת היוקרתי PNAS.

 

החוקרים גילו כיצד רשת הקיפולים והקמטים שנוצרת בעת קימוט של יריעות דקות על ידי מאמץ חיצוני, מביאה לשינוי דרסטי בתכונותיה המכאניות של היריעה. תהליך יצירת הרשת כשלעצמו מאפשר קידוד של המאמצים שהופעלו על הנייר עד אותו הרגע, כמעין "זיכרון" פיזיקלי של המערכת. אך באופן מפתיע, לאחר הקימוט מסוגלת היריעה לאחסן זיכרונות מכאניים נוספים, מבלי ליצור קפלים או קמטים חדשים.

 

לקרוא את זיכרון החומר

ד"ר לחיני מסביר: "כשאנחנו מאחסנים מידע בדיסק הקשיח של המחשב שלנו, אנחנו ממירים אותו לצופן שמורכב מהספרות אפס ואחת בלבד. פיזית, כל ספרה כזו מקודדת ברכיב מגנטי עם שני מצבים יציבים שנקרא "ביט", כשכיוון השדה המגנטי שלו (למעלה או למטה) מקודד את ערך הספרה (אפס או אחת). מעבר בין שני המצבים, לטובת קידוד או קריאה של הזיכרון, מתאפשר על ידי תופעת שנקראת לולאת חשל, או היסטרזיס. מה שזיהינו ביריעות המקומטות הוא תופעה דומה, אבל בעלת אופי מכאני. מסתבר שכאשר מקמטים את היריעה נוצר בה מערך סבוך של קימוטים,  כאשר כל אחד מהם מתפקד כלולאת חשל קטנה עם שני מצבים יציבים – מעין ״ביט״ מכאני. שני המצבים נבדלים בגיאומטריה שלהם, כאשר הקמט יכול לבלוט פנימה או החוצה מהיריעה. לרכיב אחד כזה אנו קוראים היסטרון, והוא המרכיב הבסיסי של תגובת הזיכרון של החומר כולו. אוסף ההיסטרונים שממנו בנויה היריעה כולה יכול לקודד ולשמור זיכרונות מגוונים של אירועים מכאניים שונים שחוותה היריעה. כך, על ידי תכנון מניפולציות מכאניות שונות, אפשר לשמור ולקרוא זיכרון מתוך המערכת.”

 

הדוקטורנט דור שוחט מוסיף כי "האינטראקציה שקיימת בין ההיסטרונים הללו ממלאת תפקיד חשוב בתכונות המכניות הכלליות של היריעה. כל אחד מהם וכולם יחד 'מקודדים' את התהליכים שהנייר עובר, כך שעקרונית, באמצעות מיפוי וניתוח הקימוטים ביריעה ניתן לשחזר את הפעולות שהתבצעו עליו בדיעבד ו'לקרוא' את הזיכרון. עוד מסתבר שבגלל האינטרקציות החזקות, נוצר מצב שנקרא בעגה המקצועית ״תסכול גיאומטרי״. במצב זה, בגלל המבנה הלא סדור של הקימוטים, ההיסטרונים מפריעים אחד לשני והיריעה המקומטת מתקשה להגיע למצב אנרגטי נמוך, מה שמשכלל עוד יותר את התגובה המכאנית שלה.  בכך יש דמיון למערכת מגנטית מרתקת שנקראת זכוכית ספין (spin-glass), ולמערכות לא מסודרות אחרות".

 

זו לא הכמות, זה הקימוט

בשנים האחרונות התרחב עד מאוד חקר המערכות הפיזיקליות המורכבות (Complex Systems), אשר דורשות שימוש במודלים תאורטיים יצירתיים וחדשניים שלוקחים בחשבון מספר גדול של דרגות חופש הכרוכות זו בזו – ולא תמיד ניתן לתאר את הדינמיקה ביניהם באמצעות פתרון אנליטי המבוסס על תכונות דרגת החופש הבודדת. השלם, במקרה זה, עולה על סך חלקיו.  

 

ברוח זו, הדוקטורנט דור שוחט מוסיף: "כיוון שאין פתרון פשוט למערכות מורכבות שכאלה, כדי להבין אותן לעומק יש להבין את הקשר בין התנהגות דרגת חופש בודדת לבין התנהגות המערכת כולה. המחקר על יריעות מקומטות מאפשר ליצור חיבורים כאלה, בזכות המימדים האופייניים הגדולים שלהן. די להחזיק נייר מקומט ביד ולצפות במכאניקה שלו, בכדי לקבל אינטואיציה פיזיקלית. דוגמא פשוטה היא זיכרון הצורה שיש ליריעה המקומטת – אם נכופף אותה מסביב לחפץ מסוים היא תקבל את צורתו מבלי שיווצרו קמטים חדשים – הודות להיסטרונים שמרכיבים אותה שמעניקים לה יכולת לקבל מספר גדול של צורות יציבות". החוקרים מסכמים כי המסקנות החדשות חורגות ממערכת הניסוי הספציפית, והן שופכות אור על היווצרות זיכרון פיזיקלי במערכות מורכבות נוספות, בהן הגישה לדרגות החופש הבודדות קשה יותר.

מימין: פרופ' לב שמר, פרופ' עדי אריה וגאורגי גרי רוזנמן

מחקר

21.07.2022
הגל הנושם שהוכיח תיאוריה מדעית

חוקרים הצליחו להוכיח תופעה תיאורטית ולמדוד חבילות גלים מחזוריות

  • הנדסה וטכנולוגיה
  • מדעים מדויקים

מחקר חדש של אוניברסיטת תל אביב הצליח למדוד בפעם הראשונה היעדר אפקט טלבוט במרחקי שברים של מרחק טלבוט, תופעה שנחזתה עד היום רק באופן תאורטי. מדובר בתופעה שעל פיה כאשר גל אור בעל צבע יחיד עובר דרך מבנה מחזורי, מתקבלת לאחריו שוב ושוב תבנית אור מחזורית, במרחקים קבועים הנקראים מרחקי טלבוט xT. תופעת גלים זו אינה מוגבלת רק לגלי אור ונחקרה עבור סוגים רבים ושונים של גלים, כולל גלי חומר וגלי קול. החוקרים הראו כי ניתן להסביר את שבירת הסימטריה על ידי משוואת גלים מדויקת יותר הנקראת משוואת דיסט׳ה (Dysthe).

 

לעורר חבילות גלים מחזוריות

התגלית המדעית התאפשרה במסגרת מחקר שבחן את דינמיקת ההתפשטות של חבילות גלים מחזורית בגלי כבידה משטחיים על פני מים, על ידי מדידת ההתפתחות שלהם לאורך בריכת גלי מים באורך 5 מטרים. צוות החוקרים כלל את גאורגי גרי רוזנמן, מבית הספר לפיזיקה ולאסטרונומיה ע"ש ריימונד ובברלי סאקלר, פרופ׳ וולפגנג שלייך מאוניברסיטת אולם, פרופ׳ עדי אריה מבית הספר להנדסת חשמל ומופקד הקתדרה לננו-פוטוניקה ע"ש מרקו ולוסי שאול, ופרופ׳ לב שמר מבית הספר להנדסה מכנית. המחקר פורסם בכתב העת היוקרתיPhysics Review Letters .

 

דינמיקת ההתפשטות של חבילות גלים מחזוריות נחקרה גם בתחום הלא-ליניארי באופן תאורטי. המדען ניל אחמדייב מצא פתרון אנליטי שנקרא "Akhmediev breather" שמשמעותו "גל נושם", היות והצורה שלו חוזרת על עצמה באופן מחזורי. עם זאת, יש הבדל חשוב לעומת המקרה הליניארי, והוא שמקבלים בצורה מחזורית רק את המבנה המקורי, ואילו המבנים במחזוריות הקצרה יותר לא מופיעים.

 

בניסוי שבוצע, צוות החוקרים עורר חבילות גלים מחזוריות של גלי כבידה משטחיים. לשם כך נבחר הגל הנושם של אחמדייב (Achmediev breather). כאשר הגלים המעוררים הם בעלי משרעת גדולה, הדינמיקה הלא ליניארית של גלי הכבידה המשטחיים הופכת להיות משמעותית וגורמת להיעלמות התבניות המחזוריות בעלת המחזורים הקצרים, למשל במחצית מרחק טלבוט.

 

בריכת הגלים באוניברסיטת תל אביב בה התבצע הניסוי

 

בנוסף, גילו החוקרים במסגרת המחקר כי כאשר אי-הלינאריות גבוהה יותר, המדידות חורגות מהפתרון האנליטי של אחמדייב, וניתן לראות  שבירה א-סימטרית של פונקציית הגל. שבירה זו גורמת למעטפת הגלים להאיץ במעט ולהאיט לאחר מכן חזרה למהירות החבורה. שבירת סימטריה זו נגרמת בגלל אי לניאריות מסדר גבוה, אשר אינה נלקחת בחשבון במשוואת הגלים הפשוטה - משוואת שרדינגר הלא לינארית.

 

שטיחי טאלבוט במערכת של גלי כבידה משטחיים. (1) שטיח טאלבוט ״לינארי״ (2) שטיח טאלבוט ״לא לינארי״ (3) סקיצה של מערכת ניסוי בה נמדדו התופעות

מחקר

20.07.2022
חוקרים באוניברסיטת תל אביב מתריעים: טיפול בשיטת CRISPR עלול לגרום נזק לגנום

לדברי החוקרים, "לעתים כרומוזומים שנחתכו בהליך אינם מצליחים להשתקם ויציבות הגנום מתערערת – דבר שעלול בטווח הארוך אפילו לגרום לסרטן."

  • רפואה ומדעי החיים

מחקר חדש של אוניברסיטת תל אביב מצביע על סיכונים בשימוש בטכנולוגיית CRISPR. מדובר בשיטה חדשנית לחיתוך ולעריכת DNA, שזיכתה את ממציאותיה בפרס נובל, וכבר מהווה בסיס לטיפול מתקדם במגוון מחלות, בהן סרטן, מחלות כבד ומעיים, ותסמונות גנטיות. החוקרים בחנו את השפעת השיטה על תאי T – תאי דם לבנים של המערכת החיסונית, ומצאו כי באחוז משמעותי של התאים נגרם אובדן של חומר גנטי, והגנום מאבד מיציבותו – מצב שעלול לגרום לסרטן.

 

המחקר בוצע על ידי צוות חוקרים באוניברסיטת תל אביב, בהובלת ד"ר עדי ברזל מבית הספר לנוירוביולוגיה, ביוכימיה וביופיזיקה בפקולטה למדעי החיים וממכון דותן לתרפיות מתקדמות בשיתוף בית החולים ע"ש סוראסקי (איכילוב) וכן בהובלת ד"ר אסף מדי וד"ר אורי בן-דוד מהפקולטה לרפואה ע"ש סאקלר. המחקר פורסם בכתב העת היוקרתי Nature Biotechnology.

 

מחיר העריכה

החוקרים מסבירים ש-CRISPR היא טכנולוגיה חדשנית לעריכת DNA - כלומר חיתוך הרצף בנקודה מסוימת לשם הרס מקטעים לא רצויים או לחלופין לשם תיקון או הוספת מקטעים רצויים. הטכנולוגיה, שפותחה לפני כעשור, כבר הוכיחה יעילות מרשימה לטיפול במגוון מחלות כגון סרטן, מחלות כבד, תסמונות גנטיות ועוד.

 

הניסוי הראשון שנעזר בטכנולוגיית CRISPR לטיפול בבני אדם בוצע בשנת 2020 כאשר חוקרים באוניברסיטת פנסילבניה שבארה"ב יישמו אותה על תאי T – תאי דם לבנים השייכים למערכת החיסון. החוקרים לקחו תאי T מתורם, הינדסו אותם כך שיבטאו קולטן המזהה תאי סרטן, ובמקביל, באמצעות CRISPR, הרסו גנים שמקודדים לקולטן המקורי - שעלול לגרום לתאי ה-T לתקוף את תאי גופו של הנתרם.

 

במחקר הנוכחי החוקרים ביקשו לבחון האם לצד התועלת המסתמנת עלול להיות גם סיכון נלווה לחיתוך הגנום, וזאת תחת ההנחה שתיקון לא תמיד מתרחש, וכאשר הוא מתרחש הוא איננו תמיד מושלם.

 

ד"ר בן-דוד ועוזר המחקר שלו אלי ראובני מסבירים: "הגנום בתאים של כל אחד מאיתנו נשבר לא פעם באופן טבעי, ובדרך כלל יודע לתקן את עצמו. עם זאת, קורה לעתים  שכרומוזום מסוים אינו מצליח להשתקם, וחלקים גדולים ממנו, או אפילו הכרומוזום כולו, הולכים לאיבוד. שינויים כרומוזומליים כאלו עלולים לערער את יציבות הגנום – ואנחנו רואים את התופעה הזו לעתים קרובות בתאי סרטן.  במקרה של שימוש בטכנולוגיית CRISPR המשמעות היא שהליך שנועד לטפל בסרטן עלול, בתרחיש קיצון, לגרום בעצמו ליצירת גידול סרטני."

 

כדי לבחון את מידת הנזק שגורמת הטכנולוגיה, חזרו החוקרים על הפעולות שבוצעו בניסוי בפנסילבניה - וחתכו את הגנום של תאי T בדיוק באותו מקום ובאותו אופן – בכרומוזומים שמספרם 2, 7, ו-14 (מבין 23 זוגות הכרומוזומים שמרכיבים את הגנום האנושי).  אחר כך הם ביצעו אנליזה נפרדת לכל תא, בהליך המכונה ריצוף RNA ברמת התא הבודד, ומדדו את רמת הביטוי של כל כרומוזום בכל אחד מהתאים.

 

אובדן משמעותי של חומר גנטי

בחלק מהתאים זוהה בדרך זו אובדן משמעותי של חומר גנטי. כך לדוגמה, לאחר שבוצע חיתוך CRISPR בכרומוזום 14, נמצא שהוא כמעט אינו מתבטא בכ-5% מהתאים. כאשר נחתכו כל שלושת הכרומוזומים במקביל, גדל שיעור הנזק: כ-9% מהתאים לא שיקמו את הפגיעה בכרומוזום 14,  ב-10% לא תוקנה הפגיעה בכרומוזום 7, וב-3% לא תוקן השבר בכרומוזום 2. עם זאת, היקף הפגיעה בכל אחד מהכרומוזומים היה שונה.

 

ד"ר מדי והסטודנטית שלו אלה גולדשמידט מסבירים: "ריצוף RNA ברמת התא הבודד והאנליזה החישובית אפשרו את הזיהוי המדויק הזה, והסיבה לשוני היא מיקום החיתוך על פני הכרומוזום. בסך הכול העלה המחקר שיותר מ-9% מתאי ה-T שעברו עריכה גנטית באמצעות טכנולוגיית CRISPR איבדו בעקבות זאת כמות משמעותית של חומר גנטי. המשמעות עלולה להיות אובדן היציבות הגנומית, תופעה שעלולה לגרום לסרטן".

 

בעקבות ממצאיהם ממליצים החוקרים לגלות זהירות בשימוש בטכנולוגיית CRISPR לפיתוח טיפולים, ואף מציעים שיטות חלופיות, מסוכנות פחות, להליכים רפואיים ספציפיים. כמו כן הם ממליצים למקד מאמץ מחקרי בפיתוח פתרונות בשני כיוונים חלופיים: איתור סמנים על התאים הפגועים, על מנת להרחיק אותם מהחומר המוזרק לחולה; או פיתוח שיטות שיבטיחו מראש ייצור של פחות תאים פגועים.

 

מסכמים ד"ר ברזל והדוקטורנט שלו אלסיו נחמד: "במחקר זה ביקשנו להאיר בעיות וסיכונים אפשריים בשימוש בטכנולוגיית CRISPR. וזאת על אף  שאנו מודעים היטב ליתרונותיה, ובמחקרים אחרים אנו אף מפתחים טיפולים המסתמכים עליה. כך לדוגמה פיתחנו רק לפני זמן קצר שיטה מבטיחה לטיפול באיידס המסתמכת על CRISPR, ואנחנו אף הקמנו חברות – שאחת מהן משתמשת ב-CRISPR, בעוד השנייה נמנעת מהשימוש בטכנולוגיה זו. כלומר, מצד אחד אנחנו מקדמים את הטכנולוגיה, ומצד שני מתריעים מפני סכנותיה. לכאורה יש בכך סתירה, אך אנחנו כמדענים גאים בכך. זוהי מהותו של המדע: אנחנו לא 'בוחרים צד'. אנחנו לוקחים סוגיה ובוחנים אותה מכל צדדיה, החיוביים והשליליים, ומחפשים תשובות."

מחקר

13.07.2022
האם המוסיקה תציל אותנו ממחלות הזיקנה?

מבדקים מוסיקליים יכולים לאתר הדרדרות שכלית בגיל המבוגר

  • אמנויות
  • מוח
  • חברה
  • מדעים מדויקים

הטכנולוגיות שהמצאנו מעלות עוד ועוד  את תוחלת חיינו. ביחס ישר, גדלה גם האוכלוסייה בכלל והאוכלוסייה המבוגרת בפרט, וכדי לדאוג לאיכות חייה יש צורך בכלים לאבחון זמין ומהיר של תופעות ומחלות זקנה שונות.

 

בדיקות מניעתיות מסוג זה מקובלות מאוד עבור מגוון בעיות פיזיולוגיות כמו סוכרת, יתר לחץ דם, או סרטן השד, אך עד היום לא פותחה שיטה שתאפשר ניטור שגרתי ונגיש של המוח ובעיות קוגניטיביות. חוקרות וחוקרים מאוניברסיטת תל אביב פיתחו שיטה לאיתור ירידה קוגניטיבית בגיל המבוגר, באמצעות מבחנים מוסיקליים שמודדים פעילות מוחית בכלי נייד. לדבריהם, השיטה, שעיקרה מדידת הפעילות החשמלית במוח במשך 15 דקות תוך ביצוע משימות מוסיקליות פשוטות, ניתנת ליישום בקלות על ידי כל איש צוות בכל מרפאה, ואינה מצריכה הכשרה מיוחדת.

 

מה שמוסיקה ומדע יכולים לעשות יחד

המחקר הובל על ידי הדוקטורנטית נטע מימון מבית הספר למדעי הפסיכולוגיה ומבית הספר למוסיקה ע"ש בוכמן-מהטה, וליאור מולכו מחברת נוירוסטיר שבראשותו של פרופ' נתן אינטרטור מבית הספר למדעי המחשב ע"ש בלווטניק ומבית ספר סגול למדעי המוח. עוד השתתפו: עדי ששון, שרית רבינוביץ ונועה רגב-פלוטניק מהמרכז הרפואי לשיקום וגריאטריה דורות בנתניה. המאמר פורסם בכתב העת Frontiers in Aging Neuroscience.

 

במסגרת המחקר, פיתח הצוות שיטה פורצת דרך, שמשלבת בין מכשיר נייד למדידה ולניתוח חדשני של הפעילות החשמלית במוח (EEG), פרי פיתוח של חברת נוירוסטיר, לבין מבחן מוסיקלי קצר של  כ-15-12 דקות, שפותח על ידי נטע מימון.

 

נטע, בעלת תואר ראשון בביצוע צ'לו באקדמיה למוסיקה ולמחול בירושלים ובוגרת תואר שני במוזיקולוגיה ובפסיכולוגיה קוגנטיבית, בחרה לחקור קוגניציה מוזיקלית, תחום שמשלב את שתי האהבות שלה – מוסיקה ומדע. פרופ׳ נתן אינטרטור הגיע למחקר מתוך אהבה מאוד גדולה למוזיקה והבנה שעל ידי מוזיקה אפשר גם להפעיל את המוח וגם למדוד את הפעילות המוחית, וזאת תוך כדי הנאה ומצב רוח מרומם. "יחד חשבנו איך נוכל להגיע למבחן מתוקף מוזיקלי וגם לתקף את המדדים המוחיים מהמכשיר. זאת היתה דרך ארוכה מאוד ומתאתגרת, תהליך שכלל הרבה מאוד ניסויים", מסבירה נטע.

 

התחברה באופן אישי לניסוי. נטע מימון והצ'לו, באירוע אתנחתא שהתקיים באוניברסיטת תל אביב

 

"מוסיקה משפרת את מצב הרוח ומביאה אותנו למצב שהוא אופטימלי לביצוע מבחני אינטליגנציה ויצירתיות"

 

הניסוי שעשה מצב רוח טוב למשתתפים

במהלך הבדיקה, הנבדק מתחבר למכשיר ה-EEG הנייד באמצעות מדבקה עם שלוש אלקטרודות בלבד שמוצמדת למצחו. אז עליו לבצע סדרה של משימות מוסיקליות-קוגניטיביות על פי הנחיות המושמעות לו באופן אוטומטי באוזניות. המשימות כוללות מנגינות קצרות שמנוגנות על ידי כלים שונים, והנבדק מתבקש לבצע משימות ברמות קושי שונות שקשורות למנגינות. למשל, ללחוץ על כפתור בכל פעם שמושמעת מנגינה, או ללחוץ רק כאשר הכינור מנגן. בנוסף, המבחן כולל גם כמה דקות של מדיטציה מונחית מוזיקה, שנועדה להעביר את המוח למצב של resting state, שידוע ככזה שיכול להצביע על תפקוד מוחי במצבים שונים.

 

"מוסיקה קודם כל ידועה כמעוררת מהירה של מצבי רוח ככלל, ומעלה רגש חיובי בפרט. מנגד, במצבים שונים, מוזיקה יכולה לאתגר שכלית ולהפעיל את האזורים הקדמיים של המוח, במיוחד אם אנחנו מנסים להתרכז בדברים שונים במוסיקה ולבצע תוך כדי משימה מסיומת", מסבירה נטע.

 

לדבריה, אם לוקחים את שתי היכולות הללו יחד, ניתן בעצם ליצור מבחנים קוגניטיביים לא פשוטים, אבל כאלה שיהיו גם נעימים ונוחים לביצוע. יתרה מכך, מוסיקה שהיא חיובית וקצבית במידה, תעלה את הריכוז והביצוע של המשימה עצמה. כך למשל "אפקט מוצרט" המפורסם, שמראה ביצועים טובים יותר במבחני אינטליגנציה לאחר האזנה למוסיקה של מוצרט - לא שייך למוסיקה של מוצרט בכלל, אלא לכך שמוסיקה משפרת את מצב הרוח ומביאה אותנו למצב שהוא אופטימלי לביצוע מבחני אינטליגנציה ויצירתיות. לכן, החוקרים העריכו שבעזרת כלים מוסיקליים אפשר יהיה גם לאתגר את הנבדקות והנבדקים במידה שניתן יהיה לבדוק את הפעילות הקדמית של מוחם, וגם להעלות את מצב רוחם כך שיבצעו את הבדיקה באופן טוב יותר ושיהיה להם נעים ונחמד תוך כדי.

 

"בחרתי בקטעים מוזיקליים שמנוגנים על ידי כלי אחד בודד כל פעם. רציתי לבחור בקטעים שנשמעים טוב ומנוגנות היטב ולכן בחרתי בקטעים מתוך יצירות קלאסיות. הבחירה במוזיקה קלאסית לא הייתה בגלל הסגנון, אלא מפני שבמוזיקה קלאסית קיימים קטעים כאלה לכלי סולו (לבד), בעוד שבז׳נרים של מוזיקה קלה לא נמצא בדרך כלל נגינה של כלי בודד (לדוגמא כינור, חליל, פסנתר ועוד). גם לא רצינו גורמים מתערבים כמו מילים או הכרות עם הקטעים, לכן בחרתי קטעים שהם טיפה פחות מוכרים לשומע הממוצע", היא אומרת.

 

 

אחד ממשתתפי הניסוי ומכשיר ה-EEG הנייד

 

"השיטה שלנו עשויה לסלול את הדרך לניטור קוגניטיבי יעיל של כלל האוכלוסייה, ומכאן לאיתור ירידה קוגניטיבית בשלביה המוקדמים. בכך היא צפויה לשפר לאין ערוך את איכות חייהם של מיליונים רבים בכל העולם"

 

לזהות ירידה קוגניטיבת לפני שהיא מתחילה

המחקר כלל ניסוי במרכז הרפואי לשיקום וגריאטריה 'דורות' בנתניה. כל מי שמתאשפז ב'דורות', או בכל מוסד אחר לשיקום גריאטרי, עובר מבחן סטנדרטי הקרוי 'מיני-מנטל' להערכת מצבו הקוגניטיבי, כחלק שגרתי מתהליך הקבלה. המבחן נערך על ידי מרפאה בעיסוק שהוכשרה לכך במיוחד, וכולל מגוון משימות כמו לדוגמה, למנות לאחור את ימות השבוע/חודשי השנה. במבחן זה ניתן לצבור עד 30 נקודות, כשציון גבוה מורה על קוגניציה תקינה.

 

הניסוי של המחקר נערך בקרב 50 מבוגרים המאושפזים במקום, שקיבלו במבדקי המיני-מנטל ציונים של 30-18, המעידים על רמות מגוונות של תפקוד קוגניטיבי. המשתתפים ביצעו את המשימות המוסיקליות-קוגניטיביות שניתנו בצורה אוטומטית, מכשיר ה-EEG רשם את הפעילות החשמלית במוחם במהלך הפעילות והתוצאות נותחו בטכנולוגיות של למידת מכונה. כך זוהו מדדים מתמטיים המצויים במתאם מדויק עם ציוני מבדק המיני-מנטל, או במילים אחרות: החוקרים קיבלו נוירו-מרקרים (סמנים מוחיים) חדשים, שיכולים לעמוד בפני עצמם כמדדים למצבו הקוגניטיבי של הנבדק.

 

"התוצאות היו מאוד טובות. ראינו מתאם בין המדדים המוחיים שאותם חישבנו על כל הניסויים הקודמים בנבדקים הבריאים, לבין ההידרדרות הקוגניטיבית של הנבדקים המבוגרים. המדד עלה ככל שציון ה'מיני-מנטל' שלהם גבוה יותר. למעשה, הצלחנו להראות שהמוסיקה היא אכן כלי יעיל למדידת הפעילות המוחית. חשוב מכך, כל מי שעברו את הניסוי דיווחו שהוא מצד אחד מאתגר את המוח, אבל נעים ונחמד מאוד לביצוע", אומרת נטע ומוסיפה בחיוך "זה מאוד לא טריוויאלי שבמבחן של 12 דקות יכולנו לזהות פעילות מוחית שיכולה להצביע על הדרדרות קוגניטיבית אפילו קטנה מאוד (הרבה לפני אבחנה של מחלה כמו אלצהיימר או דמנציה). אבל מה שהכי הפתיע אותי זה שהנבדקים בניסוי נהנו ממנו. בניגוד לניסויים רגילים מול מחשב שהם מתישים ומעייפים (אפילו לסטודנטים צעירים ובריאים!), בניסוי הזה התחושה שהם יצאו ממנה היא חיובית ונחמדה. אמנם חלק מהמשימות לא היו פשוטות, אך הם ביצעו אותן בהנאה רבה".

 

"השיטה שלנו מאפשרת ניטור של יכולות קוגניטיביות ואיתור ירידה קוגניטיבית כבר בשלביה המוקדמים, וכל זאת באמצעים פשוטים ונגישים, עם בדיקה מהירה וקלה לביצוע שניתנת ליישום בכל מרפאה", אומרים החוקרים ומסכמים "לשיטה זו יש חשיבות מיוחדת כיום, בעקבות העלייה בתוחלת החיים וקצב הגידול המואץ של האוכלוסייה בכלל והאוכלוסייה המבוגרת בפרט. כבר היום חיים בעולם מאות מיליוני בני אדם שסובלים, או עלולים לסבול בקרוב, מהתדרדרות קוגניטיבית ומהשלכותיה הקשות, ומספרם רק ילך ויגדל בעשורם הבאים. השיטה שלנו עשויה לסלול את הדרך לניטור קוגניטיבי יעיל של כלל האוכלוסייה, ומכאן לאיתור ירידה קוגניטיבית בשלביה המוקדמים, כאשר ניתן לטפל ולמנוע התדרדרות חמורה. בכך היא צפויה לשפר לאין ערוך את איכות חייהם של מיליונים רבים בכל העולם".

מחקר

13.07.2022
גבר, אין לך תיאבון? צא לשמש

מחקר גילה כי גברים שנמצאים בשמש אוכלים יותר

  • רפואה ומדעי החיים

יצאתם לבילוי בשמש והבנים שבחבורה חיסלו את הצידה שהבאתם? מחקר חדש של אוניברסיטת תל אביב מגלה שהחשיפה לשמש מעוררת תאבון אצל גברים, אך לא אצל נשים.

 

העור מעורר תיאבון

המחקר פורץ הדרך נערך בהובלת פרופ' כרמית לוי והדוקטורנט שיוונג פריק מהמחלקה לגנטיקה מולקולרית של האדם וביוכימיה בבית הספר לרפואה ע"ש סאקלר, ובשיתוף שורה ארוכה של חוקרים מהארץ ומהעולם, בהם חוקרים מהמרכזים הרפואיים איכילוב, אסותא, מאיר ותל השומר, וכן ד"ר יפתח גפנר וד"ר ליאור ביקובסקי מהפקולטה לרפואה ע"ש סאקלר ופרופ' אהרון וולר מאוניברסיטת בר אילן. המחקר פורסם בכתב העת היוקרתי Nature Metabolism.

 

המחקר נערך באמצעות נתונים אפידמיולוגיים שנאספו לאורך שנה שלמה על הרגלי האכילה של כ-3,000 ישראליות וישראלים, באמצעות דיווח עצמי של סטודנטיות וסטודנטים שיצאו לשמש, ובאמצעות מחקר גנטי מקביל בחיות מודל. תוצאות המחקר מזהות את העור כגורם מווסת ראשון במעלה של אנרגיה ותיאבון פשוט (מטבוליזם) הן בקרב חיות המודל והן בקרב בני אדם.

 

לתשומת לב הנשים: האסטרוגן מונע את תחושת הרעב

המחקר שנערך על חיות המודל מפענח את ההבדלים בהפעלת המנגנון המטבולי שבין זכרים לנקבות. לטענת החוקרים, הן בקרב חיות מודל זכריות והן בקרב זכרים אנושיים, החשיפה לשמש מפעילה חלבון בשם p53 שמטרתו לתקן נזקי דנ"א לעור שנגמרים בשל החשיפה. הפעלת ה-p53 מאותתת לגוף להפריש הורמון בשם גרלין – שמעודד תיאבון. מנגד, בקרב נקבות, הורמון האסטרוגן בולם את האינטראקציה בין ה-p53 לגרלין, ולכן הן לא חשות צורך לאכול אחרי החשיפה לשמש.

 

החוקרים מסבירים כי בין המינים קיימים הבדלים מטבוליים דרמטיים, שמשפיעים על בריאותם ועל התנהגותם, אך עד היום לא היה ברור אם זכרים ונקבות מגיבים אחרת גם לטריגרים סביבתיים, כמו חשיפה לקרינה על-סגולה (UV) מהשמש.

 

"בדקנו את ההבדלים בין נשים לגברים אחרי החשיפה לשמש ומצאנו כי גברים אוכלים יותר מאשר נשים, כיוון שהתיאבון שלהם עולה. זאת הפעם הראשונה שמפענחים את הקשר המולקולרי בין חשיפה ל-UV לתיאבון, וכמובן הפעם הראשונה שנערך מחקר רפואי מבוסס מין בנושא חשיפה ל-UV. מחקרים רפואיים מבוססי מין מורכבים בהרבה, ומצריכים פי שניים יותר נבדקים כדי למצוא את ההבדלים במובהקות סטטיסטית", מסבירה פרופ' לוי.

 

"אנו, בני האדם, השלנו את הפרווה שלנו, מה שאומר שהעור שלנו, שנחשב לרקמה הכי גדולה בגוף, חשוף לקבלת אותות מהסביבה. החלבון p53 בעור, שנועד להתמודד עם הנזקים הגנטיים של החשיפה לשמש, לא רק מתקן את הנזקים, אלא גם מאותת לנו שנגמר החורף ושיצאנו לשמש, אולי אפילו על מנת להתכונן לעונת הרבייה (אבל זה נושא למחקר אחר). התוצאות מהוות בסיס מעודד למחקרי המשך, הן לגבי מטבוליזם בקרב בני אדם והן למציאת שיטות טיפול מבוססות UV למחלות והפרעות של תיאבון וחילוף חומרים", היא מסכמת.

 

פרופ' כרמית לוי

מחקר

12.07.2022
בזמן שישנת

האם נוכל לגלות אם אדם שנחשב למחוסר הכרה קולט ומבין את הנאמר סביבו?

  • מוח
  • הנדסה וטכנולוגיה
  • רפואה ומדעי החיים

תגלית חדשה של אוניברסיטת תל אביב עשויה לסייע לפתור את התעלומה המדעית: כיצד הופך המוח הער את הקלט החושי לחוויה מודעת. החוקרות והחוקרים הסתמכו על נתונים שהתקבלו מאלקטרודות שהושתלו במעמקי המוח האנושי לצרכים רפואיים, כדי לבחון הבדלים בתגובת קליפת המוח לצלילים שונים שמושמעים לנבדק במצבי ערות לעומת שינה. הם הופתעו לגלות שהתגובה המוחית לצלילים עוצמתית גם במהלך השינה בכל המדדים, מלבד אחד: רמת גלי האלפא-בטא הקשורה למידת תשומת הלב, הקשב, והציפיות לגבי צלילים הנקלטים. המשמעות: במצב שינה המוח שומע את הצליל אך לא מצליח להתמקד בו ולזהות אותו, ועל כן תפיסה מודעת של הצליל אינה קיימת במצב של שינה. לדברי צוות המחקר, מדובר לראשונה במדד כמותי ששונה באופן דרמטי בין אדם ער שמודע לצלילים לבין תגובת שמע במצבי שינה, שמתאפיינים בחוסר הכרה וניתוק מהסביבה, שיוכל לשמש כבסיס לפיתוח שיטות יעילות ונגישות למדידת רמת ההכרה של אנשים השרויים לכאורה במצבים שונים של חוסר הכרה.

 

לצלול (פיזית) למעמקי המוח האנושי

המחקר נערך בהובלת ד"ר חנה חייט ובסיוע של ד"ר עמית מרמלשטיין מהמעבדה של פרופ' יובל ניר מבית הספר לרפואה ע"ש סאקלר, בית הספר סגול למדעי המוח, והמחלקה להנדסה ביו-רפואית, וכן בהובלת פרופ' יצחק פריד מהמרכז הרפואי של אוניברסיטת UCLA בארה"ב. עוד השתתפו במחקר: ד"ר אהרון קרום וד"ר יניב סלע מקבוצת המחקר של פרופ' ניר וכן ד"ר עידו שטראוס וד"ר פיראס פאהום מהמרכז הרפואי תל אביב (איכילוב). המחקר פורסם בכתב העת היוקרתי Nature Neuroscience.

 

פרופ' ניר מסביר כי ייחודו של המחקר הוא בכך שהוא מסתמך על נתונים מאלקטרודות שהושתלו במעמקי המוח האנושי ומנטרות את פעילות המוח ברזולוציה גבוהה, כולל ברמת הנוירון (תא עצב) הבודד. לדבריו, מסיבות מובנות, לא ניתן להשתיל אלקטרודות במוחם של בני אדם לצורכי המדע, אך במחקר זה, החוקרים נעזרו במצב רפואי מיוחד שבו הושתלו אלקטרודות במוחם של חולי אפילפסיה, כדי לנטר את הפעילות המוחית באזורים השונים לקראת ניתוח שנועד לסייע להם. החולים התנדבו לבחון את תגובת המוח לגירויי שמע במצבי ערות לעומת שינה.

 

במסגרת המחקר, הוצבו ליד מיטות החולים רמקולים המשמיעים צלילים שונים. החוקרים השוו את הנתונים שהתקבלו מהאלקטרודות בנוגע לפעילות תאי העצב ולגלים חשמליים מקומיים באזורים שונים של המוח, בזמן ערות ובשלבים שונים של שינה. בסך הכול נאספו נתונים מכ-700 נוירונים, כ-50 נוירונים מכל נבדק, לאורך תקופה של 8 שנים.

 

ד"ר חנה חייט

 

הכל טמון בעוצמת גלי האלפא-בטא

"לאחר שצלילים נקלטים באוזן, האות נמסר מתחנה לתחנה בתוך המוח. עד לאחרונה רווחה הסברה שבמצבי שינה, האותות הללו דועכים במהירות כשהם מגיעים לקליפת המוח. במחקר שלנו גילינו להפתעתנו שגם במהלך השינה תגובת המוח חזקה ועשירה מהצפוי, ומתפשטת לאזורים רבים בקליפת המוח ומציתה תגובה דומה בעוצמתה לזו שנמדדה במצב של ערות. אולם בתכונה ספציפית אחת גילינו פער דרמטי בית הפעילות המוחית במצבי ערות ושינה - רמת הפעילות של גלי אלפא-ביתא", מסביר ד"ר חייט.

 

החוקרים מסבירים שגלי אלפא-ביתא (בין 10 ל-30 הרץ), קשורים לתהליכים של קשב וציפייה, שנשלטים על ידי  משוב (פידבק), מאזורים גבוהים של המוח. למעשה, במקביל להעברת המידע "מלמטה למעלה"  מקולטני החושים לאזורי עיבוד גבוהים, מתרחשת גם תנועה הפוכה: האזורים הגבוהים, שמסתמכים על ידע מוקדם שנצבר במוח, פועלים כמעין יד מכוונת ואקטיבית ושולחים מידע "מלמעלה למטה", כדי להדריך את אזורי החושים במה להתרכז, ממה להתעלם, וכדומה. כך לדוגמה, כשצליל מסוים נקלט באוזן, אותם אזורים גבוהים מזהים אם הצליל מוכר או חדש, אם הוא ראוי לתשומת לב או שאולי אין צורך להתייחס אליו. פעילות מוחית זו משתקפת כדיכוי של גלי אלפא-בטא, ואכן, מחקרים קודמים זיהו רמה גבוהה של גלים אלה במצבים של מנוחה והרדמה. על פי המחקר הנוכחי, עוצמת גלי האלפא-בטא היא למעשה ההבדל העיקרי בין מצבי ערות לשינה בכל הנוגע לתגובת המוח לגירויי שמע.

 

"ניתן יהיה לבחון את מידת המודעות לסביבה של אדם דמנטי או של אדם במצב סיעודי שאינו מסוגל לתקשר עם סביבתו"

 

"לממצאים שלנו יש משמעות נרחבת, מעבר לגבולות הניסוי עצמו. ראשית, הם מספקים מפתח חשוב לשאלה העתיקה והמסקרנת מכל: מהו סוד התודעה? מהי הפעילות המוחית הייחודית שמאפשרת לנו להיות מודעים למתרחש סביבנו, ונעלמת כשאנו ישנים? גילינו קצה חוט חדש, ובמחקרים עתידיים נעמיק במנגנונים האחראים להבדל זה", אומר פרופ' ניר ומסכם "בנוסף, מכיוון שזיהינו מאפיין מוחי ספציפי שמבדיל בין מצבי הכרה וחוסר הכרה, יש בידינו לראשונה מדד כמותי שמאפשר להעריך את רמת המודעות  של הנבדק בתגובה לצלילים".

"על ידי שכלול מדידת רמת גלי האלפא-בטא במוח, תוך שימוש באמצעי ניטור נגישים שאינם פולשניים (כמו EEG), אנו מקווים שניתן יהיה, לדוגמא, לוודא במהלך ניתוח שהמטופל שרוי בהרדמה עמוקה ואינו חש דבר. באופן דומה, ניתן יהיה לבחון את מידת המודעות לסביבה של אדם דמנטי או של אדם במצב סיעודי שאינו מסוגל לתקשר עם סביבתו. במקרים כאלה, רמה נמוכה של גלי אלפא-בטא כתגובה לצלילים אף עשויה להעיד שאדם שנחשב למחוסר הכרה בעצם קולט ומבין את הנאמר סביבו. אנחנו מקווים שהממצאים שלנו ישמשו בסיס לפיתוח שיטות יעילות ונגישות למדידת רמת ההכרה של אנשים השרויים לכאורה במצבים שונים של חוסר הכרה."

 

פרופ' יובל ניר וד"ר עמית מרמלשטיין

מחקר

07.07.2022
יוצאים לגיבושון

חוקרים התחקו לראשונה אחר תהליך ייחודי בגידול גבישים זעירים, שיכול לשפר את חיינו

  • מדעים מדויקים

מה משותף לתרופה שפועלת היטב על גופנו, לשיפור איכות מסך המחשב או הסמארטפון שלנו ואפילו לשימוש בתכונות ייחודיות של בעלי חיים לצורך שדרוג הננו-טכנולוגיה הקיימת? התשובה: הבנת תהליכי ההתגבשות של מבנים גבישיים. הננו-גבישים הם תצורה מיקרוסקופית של חלקיקים (מתכות, מלחים, יסודות אקזוטיים או חומרים אורגניים), שנוטים להתארגן במבנים גאומטריים סדורים כגון קוביות, מוטות, כדורים ועוד. מחקר חדש בהובלת חוקרים מאוניברסיטת תל אביב הוכיח לראשונה כי קיים אפקט איזוטופי בהיווצרות ננו-גבישים שמשמעותו שינוי במסה של האטומים בתגובה כימית בלי לשנות את אופיים הכימי. החוקרים הצליחו לצפות בתופעה בננו-גבישים שמכילים זרחן ויסודות ממשפחת הלנתנידים, וטוענים כי ממצא זה יכול להוות בסיס למחקר למערכות גבישים נוספות.

 

הסוד להבנת היווצרות החיים

את המחקר הובילו פרופ' גיל מרקוביץ' והדוקטורנטית גל שורץ מבית הספר לכימיה בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר. קבוצתו של פרופ' מרקוביץ' חוקרת תופעות פיזיקליות וכימיות ייחודיות בסקאלה הננומטרית, הן כמדע בסיסי והן כצעד בדרך לשדרוג התקנים טכנולוגיים שונים. כמו כן, לקחו חלק במחקר פרופ' אמיר גולדבורט וד"ר אורי חננאל מאוניברסיטת תל אביב, וד"ר ליאת אברהם מהמחלקה לתשתיות מחקר כימי במכון ויצמן למדע. המאמר פורסם בכתב העת היוקרתי Journal of American Chemical Society (JACS).

 

"בעולם הגבישים יש המון צורות סימטריה שונות שלפיהן האטומים מסתדרים בגביש. בקוורץ למשל, שהוא המרכיב העיקרי בחול ומכיל אטומים של סיליקון וחמצן, יש לאטומים סידור סלילי. סליל כזה יכול להסתובב עם או נגד כיוון השעון, ואלו בעצם שתי סימטריות הפוכות שמהוות תמונת מראה אחת של השנייה. לכן, בחול שאנחנו מכירים יש שתי אוכלוסיות של גבישוני קוורץ: 50% עם אטומים מסודרים בסלילים ימניים ו-50% עם סלילים שמאליים (עם/נגד כיוון השעון). היחס 50:50 הוא בגלל שבדרך כלל אין העדפה לכיוון מסוים. אנחנו חוקרים יצירה של גבישים אחרים עם אותו סוג סימטריה ומשפיעים על היחס בין ימניים ושמאליים. כלומר, גורמים לסוג של שבירת הסימטריה בהיווצרות שלהם בכל מיני אופנים", מסביר פרופ' מרקוביץ'.

 

"לשאלות מדעיות בסיסיות כאלו של שבירת סימטריה בתהליכים כימיים (כולל גיבוש), יש קשר גם להבנת היווצרות החיים על כדור הארץ. מולקולות החיים השונות, למשל DNA, חלבונים סוכרים ועוד, גם הן מלוות בשבירת סימטריה. לכן העניין הכללי של עולם המחקר בנושא יצירת גבישים משפיע על תחומים רבים בחיינו, החל מייצור חומרי תרופות, מכיוון שהצורה שבה הגוף שלנו מקבל את חומרי התרופה חשוב מאוד להתנהגות שלה עם הכניסה לגוף. לכן, חלק ניכר מהעבודה בתעשיית התרופות עוסק בפורמולציה, הדאגה לצורה שבה הן יוכנסו לגוף, וזה נעשה למשל באמצעות גיבוש המולקולות לגבישים קטנים בעלי גודל ומבנה גבישי מסוימים", הוא מרחיב.

 

"ישנו גם נושא הביו-מינרליזציה: בעלי חיים רבים מייצרים בתוך גופם מבנים גבישיים מורכבים כמו שלד, שריון וכדומה. הבנת תהליכי ההתגבשות שלהם יכולים לתרום הרבה להבנה הביולוגית של בעלי החיים וגם איך להעתיק מהטבע יכולות יצירת חומרים עם תכונות מיוחדות, כדוגמת חוזק, גמישות ועוד" פרופ' מרקוביץ' מספק דוגמה נוספת.

 

ננו-גבישים מהמחקר כפי שצולמו בעדשת המיקרוסקופ האלקטרוני במעבדתו של פרופ' מרקוביץ'

 

בדרך להתגבשות בודקים את השפעת הממס הכימי

במחקרם החדש ניסו פרופ' מרקוביץ' ותלמידתו להתחקות אחר ההשפעה של סוג הממס שבו מתפתחים הננו-גבישים, על קצב הגידול שלהם, ולשם כך השוו בין מים רגילים לבין מים כבדים, שבהם המימן מוחלף באיזוטופ בשם דאוטריום.

 

"כאשר מכניסים את מרכיבי הגביש הנחקר לתוך סביבה מימית חומצית, הם מתגבשים לננו-מוטות. בניסוי עקבנו אחר הופעת פליטת אור מהננו-גבישים לאחר הקרנתם באור אולטרה-סגול, תופעה שמתרחשת רק כאשר הגבישים מתחילים להיווצר. החידוש שהראינו הוא כי סוג הממס אכן משפיע על תהליך הגידול של הגבישים. השווינו בין ממס מסוג מים כבדים לבין מים רגילים, והבחנו כי במים כבדים תהליך ההתגבשות אורך זמן ארוך בהרבה לעומת מים רגילים. השלב הבא היה לפענח את המנגנון הקינטי שעומד בבסיס האפקט האיזוטופי הזה", מסביר פרופ' מרקוביץ'.

 

תופעות מסוג זה, מסבירים החוקרים, מסייעות להבין טוב יותר את התהליכים הראשוניים אשר גורמים להיווצרות הגבישים בתמיסה. במחקרם זה, כמו גם במחקרים רבים בתחום הננו, עשו החוקרים שימוש בטכניקות ספקטרוסקופיות מתקדמות לצורך הבנה מעמיקה של התופעה.

 

"בניסיון להמשיך ולפענח את מנגנון הגידול של הגבישים, השתמשנו במדידות תהודה מגנטית גרעינית (השיטה שעומדת בבסיס ה-MRI), של אטומי הזרחן, וזאת על מנת לעקוב אחר השלב המקדים להיווצרות גרעיני הגיבוש. לקחנו דגימות משלבים שונים של הגידול ועצרנו את התגובה. כך מצאנו כי בטרם היווצרות גרעיני הגבישים הראשוניים, נוצרים צברים לא מסודרים של אבני הבניין של הגביש, ובהגיעם לגודל קריטי מסוים הם הופכים בבת אחת לגרעין הראשוני אשר ממנו ימשיך הגביש לגדול. מרתק לראות כי הבדל קטן ברכיב טריוויאלי לכאורה, הממס הכימי, משפיע בצורה כל כך דרמטית על הדינמיקה הכימית שעוברים החלקיקים בדרך להתגבשות", אומרת הדוקטורנטית גל שורץ.

 

כיום, מרבית המכשירים האלקטרונים המוכרים לנו עושים שימוש בננוטכנולוגיה, החל ממסכי טלוויזיה, דרך סמארטפונים ועד למעבדים במחשב. לדברי החוקרים, היכולת להתקדם הלאה בכל הקשור למזעור הרכיבים האלקטרוניים, לשיפור ההולכה שלהם וכנגזר מכך לשדרוג חוויית המשתמש - מבוססת על הבנה כימית ועל מדע בסיסי מסוג זה. לדברי החוקרים, התוצאה המיידית של מחקר זה ודומים לו היא הבנה טובה יותר של תהליכי גיבוש, במעבדה ובטבע, ובאופן עקיף תיתכן גם השפעה על חומרים טכנולוגיים, שגם הם במקרים רבים מורכבים מגבישים.

 

"זוהי תגלית חשובה לעולם הכימיה ומדע החומרים. למדנו עוד שיעור בהבנת תהליכי ההיווצרות של גבישים, נושא אשר נחקר לאורך עשרות ומאות בשנים, ואני מקווה כי המחקר שלנו ישפוך אור על תחומים שונים, מגאולוגיה ומינרלוגיה ועד ננוטכנולוגיה והנדסת חומרה", מסכם פרופ' מרקוביץ'.

 

פרופ' גיל מרקוביץ'

מחקר

07.07.2022
החיסון הרביעי נגד הקורונה מפחית ב-72% את הסיכון לתמותה של קשישים

כך קובע מחקר של אוניברסיטת תל אביב, אוניברסיטת בן גוריון ומשרד הבריאות, שכלל 40,000 דיירים בתוכנית "מגן אבות ואימהות"

  • רפואה ומדעי החיים

מחקר חדש של האוניברסיטאות תל אביב ובן גוריון נגב בשיתוף משרד הבריאות קובע: החיסון הרביעי נגד נגיף הקורונה יעיל בהגנה על אוכלוסיית הקשישים בבתי אבות מפני זן האומיקרון. המחקר פורץ הדרך כלל כ-40,000 ישראלים מבוגרים שמתגוררים במוסדות שנמצאים בפיקוח "מגן אבות ואימהות" של משרד הבריאות. לפי תוצאות המחקר, קשישים בסיכון שחוסנו במנה הרביעית של פייזר נמצאים בסיכון מופחת של 34% להידבק בזן האומיקרון, בסיכון מופחת של 64% עד 67% להזדקק לאשפוז עקב קורונה ובסיכון מופחת של 72% למות מהמחלה.

 

המחקר נערך בהובלת פרופ' ח'יתאם מוחסן ופרופ' דני כהן מבית הספר לבריאות הציבור באוניברסיטת תל אביב, פרופ' רון דגן מאוניברסיטת בן גוריון, פרופ' נמרוד מימון יו"ר החטיבה הפנימית בבית החולים סורוקה, ועד לאחרונה ראש תוכנית "מגן אבות ואימהות" של משרד הבריאות, וכן אנשי צוות התוכנית עמי מזרחי, עומרי בודנהיימר, בוריס בלינסטקי, בשיתוף עם לאה גאון וצפרירה הילל-דיאמנט מהאגף לגריאטריה במשרד הבריאות. המחקר פורסם בכתב העת היוקרתי JAMA Internal Medicine.

 

אוכלוסייה פגיעה במיוחד

"המחקר שלנו השווה בין 24,088 דיירים של מוסדות 'מגן אבות ואימהות' שקיבלו את מנת החיסון הרביעית של חברת פייזר – כלומר את הבוסטר השני, לעומת 19,687 דיירים שחוסנו בשלוש המנות הראשונות ארבעה חודשים או יותר לפני תחילת המעקב, אך בחרו שלא לקבל את הבוסטר השני", מסבירה פרופ' ח'יתאם מוחסן. "מדובר בדיירי מוסדות גריאטריים, בתי אבות ודיור מוגן שנכללים במערך 'מגן אבות ואימהות' של משרד הבריאות, בסך הכול כ-1,000 מוסדות ברחבי הארץ. זאת אוכלוסייה פגיעה במיוחד להדבקה, לתחלואה ולתמותה מנגיף הקורונה, הן בשל אופי ותנאי המחיה במוסדות, הן בשל העובדה שדיירים רבים זקוקים לעזרה בביצוע פעולות יום-יומיות והן בשל מחלות הרקע של רבים מהדיירים".

 

כשגל האומיקרון התפשט בישראל, בין ינואר למארס השנה, עוד לא היה חיסון רשום וזמין לזן זה, שעבר מוטציות משמעותיות בחלבון ה"ספייק" שמאפשר לנגיף להיצמד ולחדור לתאים אנושיים. מאחר שהחיסונים הקיימים נגד קורונה מכוונים נגד חלבון הספייק, בישראל כבשאר העולם התעורר דיון בשאלת יעילות החיסונים הקיימים נגד זן האומיקרון בכלל, ובפרט בשאלת מתן מנת דחף, או בוסטר, שנייה. ישראל הייתה המדינה הראשונה שאישרה את מנת הדחף השנייה (מנת חיסון רביעית) לבני 60 ומעלה. המחקר הנוכחי מבוסס על נתונים מבסיס הנתונים של אוכלוסיית "מגן אבות ואימהות" שהוו את הקבוצה הגדולה הראשונה לה ניתן הבוסטר השני. פרופ' מוחסן מדגישה כי המחקר החדש הינו מחקר בקנה מידה לאומי, וכי המחקר טיפל בהצלחה בבעיות מתודולוגיות המאפיינות מחקרים אפידמיולוגיים תצפיתיים בנושא יעילות חיסוני הקורונה.

 

הגנה צולבת גם נגד זן האומיקרון

פרופ' מוחסן: "עקבנו אחר ההדבקות, האשפוזים והתמותה בשתי הקבוצות הללו במשך גל האומיקרון, ומצאנו שהקבוצה שקיבלה את החיסון הרביעי נדבקה בשיעור מופחת של 34% מאשר קבוצת הביקורת, התאשפזה בדרגת חומרה קלה עד בינונית בשיעור מופחת של 64%, התאשפזה עם מחלה קשה ב-67% פחות מאשר קבוצת הביקורת והגיעה לכדי תמותה בשיעור מופחת של 72% פחות מאשר הקבוצה שהתחסנה בשלושת החיסונים הראשונים בלבד. הנתונים האלה משמעותיים כי אוכלוסיית 'מגן אבות ואימהות' שהיא כאמור אחת האוכלוסיות עם התחלואה הקשה ביותר כתוצאה מנגיף הקורונה, בשיעור גבוה בהרבה הן מהאוכלוסייה הכללית. אנו משערים כי מנת חיסון הרביעית גרמה ליצירה ולהגברה של רמת הנוגדנים המנטרלים, שהקנו הגנה צולבת גם נגד זן האומיקרון. המחקר מצביע על התועלת הניכרת ממתן מנת החיסון הרביעית, ומאשר כי המדיניות של מדינת ישראל הייתה נכונה. ההחלטה לחסן אוכלוסיות בסיכון במנה רביעית הייתה החלטה נבונה, שהצילה המון חיי אדם".

 

"זהו מחקר פורץ דרך וחדשני על בסיס מאגר נתונים של אוכלוסיית הקשישים במוסדות מוגנים. מחקרים קודמים נערכו באוכלוסייה הכללית, ולכן גם באוכלוסיות צעירות יחסית עם ממוצע גילאים של סביב 72 שנים, כאשר הגיל הממוצע במחקר שלנו עמד על 80 שנים. זאת ועוד, באופן כללי אנשים שהולכים להיבדק או להתחסן נגד קורונה נוטים לרוב להפגין התנהגות בריאותית חיובית, לכן קשה מאוד להשוות את רמות התחלואה שלהם לרמות התחלואה בקרב אנשים לא מחוסנים או כאלו שהתחסנו בשלוש מנות. אומנם אין לנו מידע מדוע חלק מהדיירים בחרו שלא להתחסן במנת החיסון הרביעית, אבל שתי הקבוצות במחקר שלנו עברו בדיקות קורונה שגרתיות ו'עיוורות' שנערכו לפי פרוטוקול אחיד של 'מגן אבות ואימהות' – בלי קשר לקבלת החיסון. לכן המחקר שלנו פחות מושפע מ'אפקט המתחסן הבריא', ואפשר להשליך את תוצאותיו גם לאוכלוסיות אחרות, בארץ ובעולם".

 

לדברי פרופ' דני כהן, "המחקר מבשר על כך שמתן בוסטרים והעלאת רמת הנוגדנים באמצעות חיסון המבוסס על זן נגיף הקורונה המקורי מקנה מיגון משמעותי נגד הופעת מחלה קשה גם אחרי הדבקה בווריאנטים חדשים, ואף רחוקים מהמקור, כמו האומיקרון".

 

פרופ' נמרוד מימון מוסיף כי "משימת ההגנה על המוסדות לדיור חוץ ביתי היא נדבך חשוב ביותר במסגרת תוכנית 'מגן ישראל' של משרד הבריאות. בסיס הנתונים שנבנה ונצבר בפרויקט לגבי המוסדות והדיירים אפשר להוציא לפועל מבצעי חיסונים יעילים ומהירים, שהניבו תוצאות דרמטיות של בלימת תחלואת הקורונה בקרב דיירי המוסדות. תוצאות מרשימות אלו של תוכנית 'מגן אבות ואימהות' זכו להד בינלאומי נרחב, וכן לפניות מרשויות בריאות במדינות רבות בעולם שביקשו ללמוד מהתוכנית". פרופ' רון דגן מסכם שהתוצאות המוצגות במאמר זה מדגימות שוב את התפקיד הקריטי של החיסונים ,תוך שימוש במערכות מובנות ויעילות בבלימת גלי תחלואה קשה ותמותה באוכלוסיות בסיכון.

מחקר

29.06.2022
האם נוכל לשלוט בכמות המלנין שבגופנו?

חוקרות מאוניברסיטת תל אביב הצליחו לייצר לראשונה מלנין בתנאי מעבדה

  • רפואה ומדעי החיים

מלנין הוא פיגמנט המיוצר בגופם של יצורים חיים ומשמש לתפקידים שונים וחיוניים, בהם הגנה על העור מפני קרינת UV, הגנה מפני רדיקלים חופשיים ותמיכה מבנית ברקמות שונות. המלנין נמצא בעיקר בעור וגם בשיער ובעיניים. ככל שריכוזו עולה, כך מתכהים צבעיהם. צבע עיניים כחול ושיער בלונדיני למשל מעידים על ריכוז נמוך של מלנין ואילו שומות ונמשים נגרמים על ידי הצטברות של מלנין. מחקר חדש בהובלת חוקרות מאוניברסיטת תל אביב הצליח לראשונה בעולם לחקות את תהליך הייצור, הביו-סינתזה של מלנין, בתנאי מעבדה. מדובר בהישג מדעי שכן החוקרות הצליחו להוכיח שאפשר לשלוט באופן דומה בייצור פיגמנט בתנאי מעבדה, בדומה ליכולת הייצור של הגוף. לדבריהן, הפיתוח החדש עשוי לסייע מאוד לתעשיית הקוסמטיקה ולעולם רפואת העור.

 

לשלוט בתהליכי הייצור

המחקר החדש נערך על ידי הדוקטורנטית טללית מסרנו וד"ר אביגיל ברוך, שתיהן חוקרות במעבדה של ד"ר אילה למפל מבית הספר שמוניס למחקר ביו-רפואי וחקר הסרטן, בפקולטה למדעי החיים ע"ש ג'ורג' ס' וייז. כמו כן, השתתפה במחקר גם ד"ר מיכל ויטמן מאוניברסיטת בר אילן. החוקרות מסבירות כי החומר הביולוגי מלנין משמש כ"פילטר" ביולוגי שבולע קרינת UV ובכך למעשה מפחית בצורה משמעותית את כמות הקרינה שחודרת לעור. יחד עם זאת, עבור אנשים רבים, בעיקר בעלי גוון עור בהיר שבעורם מיוצרת כמות מעטה של מלנין, ההגנה הטבעית מפני קרינת השמש אינה מספקת.

 

במסגרת המחקר, החוקרות שאבו השראה מתהליך הייצור הביולוגי של מלנין, שנשלט בזמן ובמרחב ומתרחש בתוך חללים קטנים בתוך התא הקרויים אברונים, וביקשו להוכיח שאפשר לשלוט באופן דומה בייצור הפיגמנט בתנאי מעבדה, בדומה ליכולת הייצור של הגוף. החוקרות בנו מערכת של טיפות נוזל הנוצרות בתהליך הפרדת פאזות של שני פולימרים. אותן טיפות מחקות אברונים תאיים ומאפשרות כניסה וקליטה של מולקולות לתוכן (למשל אנזים, סוג של חלבון, המזרז את התגובה). כך, הסביבה נגישה יותר לשינויים המקלים על יצירת המלנין.

 

"חומרים ביולוגיים הרבה יותר מורכבים בתכונותיהם מחומרים סינתטיים וכך גם הדרך שבה הם מיוצרים בגוף לעומת ייצורם במעבדה. אחד האתגרים המרכזיים שעימם אנו מנסים להתמודד הוא היכולת לשלוט בתהליך הייצור של ביו-חומרים במעבדה על ידי שימוש בתהליכים דומים לאלה שמתרחשים בגופנו לייצור חומרים ביולוגיים, בדומה לעבודה הנוכחית בה ייצרנו מלנין בתוך טיפות נוזל המדמות אברונים תאיים״, מסבירה ד"ר למפל.

 

תוצאות המחקר הראו שבעזרת הטכנולוגיה החדשה שהחוקרות פיתחו ניתן לשלוט בתהליך הייצור של מלנין במעבדה, ולקבל פיגמנט הדומה בתכונותיו למלנין הביולוגי.

 

מימין לשמאל: ד"ר אילה למפל, ד"ר אביגיל ברוך וטללית מסרנו

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>