חדשות

NEWS

מה מעניין אותך?

כל הנושאים
אמנויות
מוח
הנדסה וטכנולוגיה
חברה
מדעים מדויקים
ניהול ומשפט
סביבה וטבע
רוח
רפואה ומדעי החיים
חיי הקמפוס
מוזיאון הטבע
חוקרים.ות את החדשות
הדוקטורנט איתי קציר וד"ר אילה למפל

מחקר

30.11.2022
לראשונה בעולם: בידוד של מולקולות רבות בתא אחסון יחיד ושחרורן באמצעות חשיפה

לטכנולוגיה החדשה פוטנציאל רב ביישומיים ביו-רפואיים לרבות הובלה, אחסון ושחרור מבוקר ואיטי של תרופות, חיסונים ועוד

  • רפואה ומדעי החיים

חוקרים באוניברסיטת תל אביב פיתחו טכנולוגיה חדשה שתאפשר, לראשונה בעולם, שליטה באחסון ושחרור מולקולות באמצעות חשיפה לאור – קרינת UV. החוקרים מסבירים כי אחסון מולקולות נחשב לאתגר משמעותי בתעשייה ובעולם המדעי: היכולת לשמור אותן מבודדות זוהי משימה לא פשוטה, שכן המולקולות נוטות להתפרק ולהגיב עם חומרים אחרים.

 

הטכנולוגיה החדישה עשויה להביא לפתרון הבעיה, על ידי כך שהיא תאפשר אחסון מולקולות רבות בתא אחסון יחיד. החוקרים מעריכים שהפיתוח יקדם בניית מערכות לאחסון ביו-מולקולות ותרופות, ושחרור יעיל ומבוקר שלהן בעת הצורך על ידי גירוי חיצוני, באמצעות אור.

 

המחקר נערך בהובלת הדוקטורנט איתי קציר ובהנחייתה של ד"ר אילה למפל מבית הספר שמוניס למחקר ביו־רפואי וחקר הסרטן בפקולטה למדעי החיים של אוניברסיטת תל אביב. המחקר פורסם בכתב העת היוקרתי "Advanced Materials".

 

חיקוי התפקוד של וירוס החצבת

החוקרים מסבירים כי המערכת החדשה פותחה בהשראת מערכת ההדבקה של וירוס החצבת. כשווירוס זה מדביק תא אדם, הוא יוצר "אורגנלה" (אברון) המתפקד כמפעל לייצור וירוסים, ולכן נקרא Viral factory. לאחרונה, מספר מחקרים הראו שמפעלי וירוסים אלו הינם מבנים נוזליים שנוצרים בתהליך של הפרדת פאזות בתוך התא.

 

בהשראת החלבון הוויראלי האחראי על יצירת המפעלים הללו, צוות המחקר ייצר פפטיד (חלבון קצר) המחקה את התפקוד של חלבון החצבת, ומטרתו היא יצירה מבנים דמויי viral factories לאחסון וכליאה של ביו-מולקולות. בנוסף, לאחר יצירת הטכנולוגיה החדשה, החוקרים הכניסו עוד אלמנט ייחודי שיאפשר לשלוט בתהליך האחסון והשחרור של מולקולות באמצעות הקרנת אור על המבנה.

 

שחרור מבוקר עם חשיפה לאור

ד"ר למפל: "המטרה שלנו הייתה להנדס קומפלקס של פפטיד משולב עם RNA שיאפשר אחסון של מולקולות במבנים נוזליים (טיפות נוזל), השומרים על הדינמיות והמבנים המיוחדים של מולקולות ביולוגיות וכימיות שונות. הפפטיד וה-RNA יוצרים יחד מבנים של טיפות נוזלים, שדומים ל-viral factories. בהמשך הוספנו לפפטיד קבוצת הגנה שמשתחררת באמצעות חשיפה לקרינת UV. למבנים עם קבוצת ההגנה יש יכולת טובה יותר לאחסן מולקולות בתוכן לעומת מבנים ללא קבוצת ההגנה. לכן, על ידי חשיפה של המערכת לקרינת אור בתחום ה-UV ושחרור קבוצת ההגנה, ניתן לשלוט בשחרור המולקולות המאוחסנות, וכך יצרנו מערכת שמאפשרת שחרור מבוקר תלוי-גירוי".

 

"דבר נוסף שמיוחד במערכת שלנו הוא היכולת להכניס מולקולות רבות לתא אחסון אחד, מה שלא מתאפשר כיום בטכנולוגיות הקיימות. זוהי טכנולוגיה עם פוטנציאל רב ביישומיים ביו-רפואיים לרבות הובלה, אחסון ושחרור מבוקר ואיטי של תרופות, חיסונים או ביו-מולקולות תרפויטיות אחרות," מסכמת ד"ר למפל.

מחקר

22.11.2022
להחליק את זה: שלבים אטומיים בסולם החשמלי הדק בטבע

מחקר של אוניברסיטת תל אביב חושף סולם אטומי ייחודי של פוטנציאלים חשמליים

  • מדעים מדויקים

מחקר חדש של אוניברסיטת תל אביב חושף מערכת גבישים דו-ממדית, המאפשרת שליטה ייחודית במטען החשמלי שלה באמצעות החלקה בין שכבות אטומיות. המערכת החדשה יוצרת שלבי סולם בעובי אטומי של פוטנציאלים חשמליים נפרדים ומוגדרים היטב, וייתכנו לה שלל יישומים בתעשייה בכלל ובטכנולוגיות מידע בפרט.

 

המחקר נערך בהובלת צוות החוקרים: ד"ר סווארופ דב, סטודנט המחקר נועם ראב, פרופ' משה גולדשטיין וד"ר משה בן שלום, מבית הספר לפיזיקה באוניברסיטת תל אביב, ד"ר וואי כאו, פרופ' עודד הוד ופרופ' מיכאל אורבך מבית הספר לכימיה באוניברסיטת תל אביב, ופרופ' ליאור קרוניק ממכון ויצמן למדע. תוצאות המחקר פורסמו בכתב העת היוקרתי Nature.

 

ד"ר משה בן שלום, ראש המעבדה לחומרים קוונטים שכבתיים בבית הספר לפיזיקה מסביר: "אנחנו סקרנים מאוד לגלות איך אטומים מחליטים להסתדר בחומר, איך האלקטרונים בוחרים להתערבב ביניהם, ואיך אפשר לתמרן את הסדר האטומי והמטען החשמלי מבחוץ. קשה לענות על השאלות האלה בגלל הכמות הגדולה של האטומים והאלקטרונים אפילו בהתקנים המזעריים של היום. אחד הטריקים הוא לחקור גבישים, שכן האטומים שלהם מסודרים במבנה מחזורי, כך שהמידע על כל המערכת נקבע על ידי התכונות של התא המחזורי האחד – שכולל מספר בודד של אטומים ואלקטרונים. ועדיין קשה לנו להבין ולחזות את הסדר שלהם, בגלל שהאלקטרונים נפרסים בו-זמנית על פני כל האטומים והתכונות של המערכת הקוואנטית נקבעות על ידי כל החלקיקים יחד ויחסי הגומלין שביניהם".

 

החלקטרוניקה

דרך אחת לגלות את סדר האטומים ואת התפלגות המטען החשמלי היא לשבור את הסימטריה של המבנה, כך שייווצר שדה חשמלי פנימי קבוע בגביש. גבישים אלו נקראים "פולאריים" או מקוטבים. ב-2020 יצרה המעבדה של ד"ר בן שלום גביש מקוטב חדש על ידי הדבקה של שתי שכבות זהות – כאשר כל שכבה היא בעובי אטום בודד. לעומת הגבישים הסימטריים שגדלים בטבע בהם כל שכבה חדשה מסתובבת, כדי למקם אטומים מסוג אחד בדיוק מעל לאטומים מסוג שני, החוקרים הדביקו את זוג השכבות ללא הסיבוב – וכך גרמו להחלקה זעירה בין השכבות ששוברת את הסימטריה, גורמת לדילוג של האלקטרונים משכבה אחת לאחרת, ויוצרת קיטוב חשמלי פנימי. בשלב שני גילו החוקרים שאפשר להחליק בין השכבות קדימה ואחורה וכך למתג את הקיטוב החשמלי באמצעות שדה חשמלי חיצוני (ראו איור). לתופעה הם קראו SlideTronics, "החלקטרוניקה".

 

"החלקה וטיפוס בין קיטובים חשמליים": מבנה הגביש המחזורי מכיל זוג אטומים במרווחים קבועים בכל שכבה אופקית. ניתן להחליק כל שכבה נוספת ימינה או שמאלה במישור האופקי כדי למקם אטום כחול בדיוק מעל אטום אדום או להפך ובכך להקפיץ אלקטרונים עם מטען חשמלי מעלה או מטה בין השכבות. שלא כמו בגבישים מקוטבים המוכרים עד כה, הפוטנציאל החשמלי במערכת החדשה משתנה בערך קבוע ומוגדר היטב בין כל שלב ושלב. ניתן לטפס בצורה נשלטת בין כל האפשרויות השונות, כלומר ניתן למתג בין יחידות המידע באותו גביש בניגוד לזוג מצבים בטכנולוגיות קודמות.

 

גביש בעובי שני אטומים בלבד

ד"ר בן שלום מוסיף: "הגביש המקוטב החדש שגילינו, בעובי שני אטומים בלבד, הוא הדק ביותר האפשרי ועשוי לשמש בטכנולוגיות מידע מבוססות מנהור קוואנטי. אנו מפתחים יחידות מנהור כאלו בחברת Slide-Tro LTD שהוקמה ע"י האוניברסיטה ומשקיע חיצוני ופועלת כעת מתחת לרדאר, ומאמינים כי התופעה מאפשרת בסיס רחב להתקנים אלקטרוניים חדשניים החל מפתרונות להפחתת הספק ועד ליחידות זיכרון משופרות. בהיבטי מחקר יסודי, התגלית העלתה בנו מייד שאלות חדשות: איך יסתדר המטען? ומה יהיה גודל הקיטוב? אם נדביק שכבות נוספות למערכת בצורה שתשבור או תשמור את הסימטריה? במילים אחרות, במקום לרדד את עובי המערכת על ידי איכול שכבות מהגביש, כפי שנעשה עד כה, יכולנו כעת לערום גבישים מקוטבים שכבה אחר שכבה זו מעל זו, ובו בזמן למדוד את גודל הקיטוב והפוטנציאל החשמלי שנוצר בכל שלב בסולם השכבות".

 

בניסוי הנוכחי הצליחו החוקרים להשוות אזורים סמוכים בעלי מספר שכבות שונה, שנערמו יחד עם החלקות בכיוונים שונים היוצרים קיטובים בגדלים שונים. לדוגמה, עבור ארבע שכבות (ושלושה משטחי מגע מקוטבים) יש ארבע אפשרויות לסדר את כיוון שלושת הקיטובים: כולם מצביעים למעלה ↑↑↑, שניים למעלה ואחד למטה  ↑↑↓, אחד למעלה ושניים למטה ↑↓↓ או שלושה למטה ↓↓↓.

 

"לשמחתנו גילינו סולם של קיטובים מוגדרים היטב המופרדים ביניהם בערכי קיטוב אחידים, כך שכל שלב בסולם יכול לשמש כיחידת מידע נפרדת", אומר נועם ראב, סטודנט המחקר שמדד את הגבישים. "זוהי כאמור תגובה שונה מאוד מזו של הגבישים המוכרים עד כה, שבהם תגובת פני השטח לקיטוב היא משמעותית והחלפת הקיטוב אפשרית כיחידה אחת בלבד – כלומר שינוי הקיטוב בשכבה אחת משנה את מטען השכבות כולן".

 

ד"ר סווארופ דב, כותב מוביל במאמר, מדגיש: "הצלחנו גם לטעון את השכבות באלקטרון נוסף לכל מאה אטומים בערך ולשפר בכך משמעותית את הולכת הגבישים במישור מבלי לפגוע בקיטוב הניצב". תוך הסתייעות בחישובים תיאורטיים על סמך עקרונות היסוד של המכניקה הקוואנטית, גילינו שאפשר לתכנן ולבנות צירופי גבישים שכבתיים נוספים באמצעות החלקה יחסית בין השכבות, וכי המידע אודות הקיטוב והסימטריה של המערכת נותר כלוא בין השכבות ומוגן מהסביבה," אומר ד"ר וואי כאו, כותב ראשי נוסף שערך את החישובים. "למעשה ה'החלקטרוניקה' עזרה לנו לגלות את סולם הקיטובים הדק ביותר שאפשר לבנות," מסכם ד"ר בן שלום. "המשך מתבקש למחקר עתידי הוא תמרון סדרים אלקטרוניים נוספים, כגון קיטוב מגנטי ומוליכות-על באמצעות החלקות דומות בין סימטריות גבישיות שונות".

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>